News

Microsoft Research Launches Blockchain AI Project

It's been a busy summer for Microsoft and its Microsoft Research division as they continue to push forward a slew of artificial intelligence (AI)-related initiatives.

Earlier this month, Microsoft announced a $1 Billion collaboration with Open AI. Just a week before, it updated its new machine learning framework, ML.NET. In late June, Microsoft Research open sourced its TensorWatch troubleshooting tool. And all that came on the heels of all the AI and machine learning announcements it made at its Build 2019 conference.

Now Microsoft Research is unveiling its latest AI imitative, one that aims to help "democratize AI" with a new open-source framework that will leverage blockchain technology to make it possible for organizations to run machine learning (ML) models with inexpensive, commonly available tech, such as Web browsers and smartphone apps.

The new project, Decentralized & Collaborative AI on Blockchain, now on GitHub, seeks to develop "a framework for participants to collaboratively build a dataset and use smart contracts to host a continuously updated model," wrote Justin D. Harris, a senior software developer at Microsoft, and Bo Waggoner, a post-doctoral researcher, in their original proposal for the project on the Cornell University computer science blog. GitHub describes it as "a framework to host and train publicly available machine learning models."

The project is being developed initially on top of Ethereum, a public blockchain platform for building and deploying decentralized applications (DApps) and "smart contracts" (also called cryptocontracts), 

Why blockchain? Harris explained on the Microsoft Research blog: "Leveraging blockchain technology allows us to do two things that are integral to the success of the framework: offer participants a level of trust and security and reliably execute an incentive-based system to encourage participants to contribute data that will help improve a model's performance."

By providing an ML framework that will be shared publicly on a blockchain, the project's proponents argue, where models are generally free to use for evaluating predictions, users can build datasets and train and maintain models "collaboratively and continually."

The framework will be ideal, Harris wrote, for "AI-assisted scenarios people encounter daily, such as interacting with personal assistants, playing games, or using recommender systems." He added: "In order to maintain the model's accuracy with respect to some test set, we propose both financial and non-financial (gamified) incentive structures for providing good data."

The details of those incentive structures are laid out on the GitHub page, but Harris goes into much greater detail in his blog post. There he also describes how Microsoft researchers used the framework to create a Perceptron model (an algorithm for supervised learning of binary classifiers), which is capable of classifying the sentiment, positive or negative, of a movie review.

Harris also notes that Hosting a model on a public blockchain requires an initial one-time fee for deployment based on the computational cost to the blockchain network. After the initial fee "anyone contributing data to train the model, whether that be the individual who deployed it or another participant, will have to pay a small fee, usually a few cents, again proportional to the amount of computation being done," he wrote. As of July 2019, it costs about 25 cents to update the model on Ethereum.

"We have plans to extend our framework so most data contributors won't have to pay this fee," Harris added. "For example, contributors could get reimbursed during a reward stage, or a third party could submit the data and pay the fee on their behalf when the data comes from usage of the third party's technology, such as a game."

This Decentralized & Collaborative AI on Blockchain project is now open for contributions and suggestions. Most contributions must be made under Microsoft's open-source Contributor License Agreement (CLA), which states that the contributor has the right to make the contribution and grants Microsoft the right to use it.

About the Author

John K. Waters is the editor in chief of a number of Converge360.com sites, with a focus on high-end development, AI and future tech. He's been writing about cutting-edge technologies and culture of Silicon Valley for more than two decades, and he's written more than a dozen books. He also co-scripted the documentary film Silicon Valley: A 100 Year Renaissance, which aired on PBS.  He can be reached at jwaters@converge360.com.

comments powered by Disqus

Featured

  • VS Code v1.99 Is All About Copilot Chat AI, Including Agent Mode

    Agent Mode provides an autonomous editing experience where Copilot plans and executes tasks to fulfill requests. It determines relevant files, applies code changes, suggests terminal commands, and iterates to resolve issues, all while keeping users in control to review and confirm actions.

  • Windows Community Toolkit v8.2 Adds Native AOT Support

    Microsoft shipped Windows Community Toolkit v8.2, an incremental update to the open-source collection of helper functions and other resources designed to simplify the development of Windows applications. The main new feature is support for native ahead-of-time (AOT) compilation.

  • New 'Visual Studio Hub' 1-Stop-Shop for GitHub Copilot Resources, More

    Unsurprisingly, GitHub Copilot resources are front-and-center in Microsoft's new Visual Studio Hub, a one-stop-shop for all things concerning your favorite IDE.

  • Mastering Blazor Authentication and Authorization

    At the Visual Studio Live! @ Microsoft HQ developer conference set for August, Rockford Lhotka will explain the ins and outs of authentication across Blazor Server, WebAssembly, and .NET MAUI Hybrid apps, and show how to use identity and claims to customize application behavior through fine-grained authorization.

  • Linear Support Vector Regression from Scratch Using C# with Evolutionary Training

    Dr. James McCaffrey from Microsoft Research presents a complete end-to-end demonstration of the linear support vector regression (linear SVR) technique, where the goal is to predict a single numeric value. A linear SVR model uses an unusual error/loss function and cannot be trained using standard simple techniques, and so evolutionary optimization training is used.

Subscribe on YouTube